UBC: Cubes for English Semantic Textual Similarity and Supervised Approaches for Interpretable STS
نویسندگان
چکیده
In Semantic Textual Similarity, systems rate the degree of semantic equivalence on a graded scale from 0 to 5, with 5 being the most similar. For the English subtask, we present a system which relies on several resources for token-to-token and phrase-to-phrase similarity to build a data-structure which holds all the information, and then combine the information to get a similarity score. We also participated in the pilot on Interpretable STS, where we apply a pipeline which first aligns tokens, then chunks, and finally uses supervised systems to label and score each chunk alignment.
منابع مشابه
UMDuluth-BlueTeam: SVCSTS - A Multilingual and Chunk Level Semantic Similarity System
This paper describes SVCSTS, a system that was submitted in SemEval-2015 Task 2: Semantic Textual Similarity(STS)(Agirre et al., 2015). The task has 3 subtasks viz., English STS, Spanish STS and Interpretable STS. SVCSTS uses Monolingual word aligner (Sultan et al., May 2014), supervised machine learning, Google and Bing translator API’s. Various runs of the system outperformed all other partic...
متن کاملNeRoSim: A System for Measuring and Interpreting Semantic Textual Similarity
We present in this paper our system developed for SemEval 2015 Shared Task 2 (2a English Semantic Textual Similarity, STS, and 2c Interpretable Similarity) and the results of the submitted runs. For the English STS subtask, we used regression models combining a wide array of features including semantic similarity scores obtained from various methods. One of our runs achieved weighted mean corre...
متن کاملDLS$@$CU at SemEval-2016 Task 1: Supervised Models of Sentence Similarity
We describe a set of systems submitted to the SemEval-2016 English Semantic Textual Similarity (STS) task. Given two English sentences, the task is to compute the degree of their semantic similarity. Each of our systems uses the SemEval 2012–2015 STS datasets to train a ridge regression model that combines different measures of similarity. Our best system demonstrates 73.6% correlation with ave...
متن کاملVRep at SemEval-2016 Task 1 and Task 2: A System for Interpretable Semantic Similarity
VRep is a system designed for SemEval 2016 Task 1 Semantic Textual Similarity (STS) and Task 2 Interpretable Semantic Textual Similarity (iSTS). STS quantifies the semantic equivalence between two snippets of text, and iSTS provides a reason why those snippets of text are similar. VRep makes extensive use of WordNet for both STS, where the Vector relatedness measure is used, and for iSTS, where...
متن کاملSTS-UHH at SemEval-2017 Task 1: Scoring Semantic Textual Similarity Using Supervised and Unsupervised Ensemble
This paper reports the STS-UHH participation in the SemEval 2017 shared Task 1 of Semantic Textual Similarity (STS). Overall, we submitted 3 runs covering monolingual and cross-lingual STS tracks. Our participation involves two approaches: unsupervised approach, which estimates a word alignment-based similarity score, and supervised approach, which combines dependency graph similarity and cover...
متن کامل